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Abstract

Exact and approximate artificial boundary conditions are derived for computing axially symmetric Stokes flow

around an axisymmetric body.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

To calculate numerically the flow of a fluid of infinite extent around a finite body, it is usual to surround

the body by an artificial boundary B. The domain between the body surface S and the boundary B is the

computational domain X. To complete the formulation of the problem in X, boundary conditions must be

imposed at B. They are called artificial boundary conditions, because B is an artificial boundary. Such con-
ditions for various partial differential equations are discussed by Givoli [3].

We shall derive exact artificial boundary conditions for Stokes flow around an axisymmetric body. This

is a slow steady axisymmetric flow of a viscous incompressible fluid. In spherical polar coordinates, the

stream function W(r,h) of such a flow satisfies the equation [6, p. 132, Eq. (1.9) and p. 133, Eq. (1.11)]
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Wðr; hÞ ¼ 0: ð1:1Þ
Because (1.1) is linear, the solution can be separated into a known part representing a given incident flow
and an unknown scattered part. The scattered part can be represented outside a sphere of radius R by the
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Wðr; hÞ ¼
X1
n¼1

Anr2�n þ Bnr�n
� �

QnðhÞ; r P R: ð1:2Þ
Here, QnðhÞ ¼ NnC
�1=2
�n ðcos hÞ is the Gegenbauer polynomial C�1=2

�n multiplied by the normalization constant
Nn, while An and Bn are constants. We shall make use of (1.2) in deriving artificial boundary conditions.

Since (1.1) is of fourth order, two boundary conditions must be imposed at B.

In Section 2, we derive exact boundary conditions. The derivation is similar to that of Keller and Givoli

[5] for the Helmholtz equation, and it requires that B be a sphere. The resulting conditions are nonlocal

since they involve integration over B. In Section 3, we present a sequence of local boundary conditions.

They are analogous to those given by Bayliss and Turkel [1] for the Helmholtz equation. Engquist and Majda

[2] derived similar local conditions for general linear differential equations.
2. Exact boundary conditions

To derive exact boundary conditions, we choose the artificial boundary B to be a sphere of radius R.

Then at r = R we take the inner product of both sides of (1.2) with Qj(h) and use the orthonormality of

the Qj to obtain
Z p

0

QjðhÞWðR; hÞ sin h dh ¼ AjR2�j þ BjR�j; j ¼ 1; 2; . . . ð2:1Þ
Next we differentiate (1.2) with respect to r and take the inner product of both sides of the resulting equa-

tion with Qj to get
Z p

0

QjðhÞWrðR; hÞ sin h dh ¼ ð2� jÞAjR2�j�1 � jBjR
�j�1; j ¼ 1; 2; . . . ð2:2Þ
We solve (2.1) and (2.2) for AjR
2 � j and BjR

�j to obtain
AjR2�j ¼ j
2

Z p

0

QjðhÞWðR; hÞ sin h dhþ R
2

Z p

0

QjðhÞWrðR; hÞ sin h dh; ð2:3Þ

BjR�j ¼ j� 2

2

Z p

0

QjðhÞWðR; hÞ sin h dhþ R
2

Z p

0

QjðhÞWrðR; hÞ sin h dh: ð2:4Þ
Now we compute Wrr(R,h) and Wrrr(R,h) by differentiating (1.2) twice and thrice respectively and setting
r = R. Then we use (2.3) and (2.4) for Aj and Bj in the resulting equations. In this way we get
WrrðR; hÞ ¼ R�2
X1
n¼1

QnðhÞ ð2� nÞð2� n� 1Þ n
2
þ nðnþ 1Þ ðn� 2Þ

2

� � Z p

0

Qnðh0ÞWðR; h0Þ sin h0 dh0
�

þ½ð2� nÞð2� n� 1Þ þ nðnþ 1Þ�R
2

Z p

0

Qnðh0ÞWrðR; h0Þ sin h0 dh0
�
: ð2:5Þ

WrrrðR; hÞ ¼ R�3
X1
n¼1

QnðhÞ ð2� nÞð2� n� 1Þð2� n� 2Þ n
2
� nðnþ 1Þðnþ 2Þ ðn� 2Þ

2

� ��

�
Z p

0

Qnðh0ÞWðR; h0Þ sin h0 dh0 þ ð2� nÞð2� n� 1Þð2� n� 2Þ � nðnþ 1Þðnþ 2Þ½ �

� R
Z 1

Qnðh0ÞWrðR; h0Þ sin h0 dh0
�
: ð2:6Þ
2 0
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Eqs. (2.5) and (2.6) are two exact nonlocal boundary conditions on W(r,h) at the artificial boundary

r = R. They express the second and third r derivatives of W in terms of W and Wr on r = R. They are exact

because they are derived from the exact representation (1.2) in r P R.

We will now show that the problem in X with these conditions at B is well posed, and that its solution is

exactly the restriction to X of the solution of the original problem in the infinite domain occupied by the
fluid. To do so, we assume that the original problem is well posed, i.e., that it has a unique solution which

depends continuously on the data given on the body surface S.

To prove that the problem in X does have a solution, we note that the restriction to X of the solution of

the original problem is such a solution. To prove that it is unique, we suppose that there are two solutions

in X. Each of them can be continued into the infinite domain of the fluid by (1.2) with Aj and Bj given by

(2.3) and (2.4). The resulting solutions are continuous with three continuous derivatives at r = R, as a con-

sequence of (1.2), (2.1), (2.2), (2.5) and (2.6). The fourth and higher radial derivatives can then be shown to

be continuous by using (1.1). Thus these two solutions in the infinite domain are solutions of the original
problem, which has a unique solution. Therefore the two solutions in X have to be identical.

Since (2.5) and (2.6) are exact, their accuracy does not depend upon R. Therefore they can be used with

R small, which makes the computational domain X small. Furthermore they can be used with any numer-

ical method in the computational domain. In particular, they can preserve the symmetry of the stiffness ma-

trix in the finite element method.

Their disadvantages are:

(a) The artificial boundary B must be a sphere.
(b) They are nonlocal, so they involve integration over B, and they require the calculation of the Qj(h), but

these are not significant difficulties.

(c) The sums in (2.5) and (2.6) must be truncated at a finite value N. This introduces errors dWrr(R,h) in
(2.5) and dWrrr(R,h) in (2.6) associated with the higher modes n > N. They are given by
dWrrðR; hÞ ¼ O R�ðNþ3Þ� �
; dWrrrðR; hÞ ¼ O R�ðNþ4Þ� �

as R ! 1: ð2:7Þ
Thus the truncation error decreases as N increases and as R increases.

The truncated boundary conditions can be improved by modifying them as in Grote and Keller [4, Sec-

tions 3 and 4].

In Appendix A, uniqueness is proved for the problem in the computational domain X, with the truncated

boundary conditions on B when the body is a sphere.
3. Local artificial boundary conditions

When the sums on the right-hand sides of (2.5) and (2.6) are omitted, which corresponds to truncation at

N = 0, those equations become
Wrrðr; hÞ ¼ 0; Wrrrðr; hÞ ¼ 0; ðr; hÞ 2 B: ð3:1Þ

The conditions (3.1) are local artificial boundary conditions, which are approximations to the exact non-
local conditions (2.5) and (2.6). As (2.7) shows, the errors in these two approximations are O(R�3) and

O(R�4) respectively, which are small only if R is large.

A sequence of successively more accurate local boundary conditions can be formulated by introducing

the operators LN defined by
L0 ¼ o
2
r ; LN ¼ o

2
r P

N

j¼1
ðjþ rorÞ; N ¼ 1; 2; . . . : ð3:2Þ
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Upon applying LN to W given by (1.2) we get
LNWðr; hÞ ¼ O½r�ðNþ3Þ�; N ¼ 0; 1; . . . : ð3:3Þ

This suggests that we choose a value of NP 0 and any artifical boundary B, not necessarily a sphere, and

impose the two conditions
LNWðr; hÞ ¼ 0; LNþ1Wðr; hÞ ¼ 0 ðr; hÞ 2 B: ð3:4Þ

When N = 0 these conditions reduce to (3.1), but applied on any boundary B, not just on a sphere. They are

analogous to the conditions of Bayliss and Turkel [1] for the Helmholtz equation.

The conditions (3.3) are local, they can be used on an artificial boundary B of any shape, and they be-

come more accurate as r increases. However, for N > 0 they involve high order r derivatives. Their order

can be reduced by using the differential equation (1.1) at the expense of introducing h derivatives. The con-

ditions with N = 0 involve only second and third derivatives, so they are the easiest to use.
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Appendix A. Uniqueness with the truncated boundary condition

We have already shown that the problem in the computational domain with the exact boundary condi-

tions (2.5) and (2.6) is well posed. Now we consider the problem with these conditions truncated at N. We

shall prove that the solution is unique for any N P 0 when the body is a sphere r = a on whichW andWr are

specified. Then the difference W between two solutions satisfies (1.1) in a 6 r 6 R with W = Wr = 0 at r = a

and the truncated forms of (2.5) and (2.6) at r = R.

Since the body is a sphere, the solution can be written in the form
Wðr; hÞ ¼
X1
n¼1

QnðhÞunðrÞ; a 6 r 6 R: ðA:1Þ
The function un(r) satisfies the fourth order ordinary differential equation
o2r � r�2nðnþ 1Þ
� �2

unðrÞ ¼ 0; a 6 r 6 R; ðA:2Þ
and at r = a the boundary conditions
unðaÞ ¼ orunðaÞ ¼ 0: ðA:3Þ

At r = R the boundary conditions for n P N + 1 are
o
2
r un ¼ 0; o

3
r un ¼ 0 at r ¼ R: ðA:4Þ
We multiply (A.2) by un(r) and integrate the resulting equation from r = a to r = R. After integrating by

parts twice, we can write the result in the form
Z R

a
un o

2
r � r�2nðnþ 1Þ

� �2
un dr ¼

Z R

a
o
2
r � r�2ðnþ 1Þ

� �
un

� �2
dr

3
� �

2
� � �2 2

� �R
þ un or un � orunð Þ or un þ 2nðnþ 1Þr un a
¼ 0: ðA:5Þ
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In view of (A.3), the boundary term vanishes at r = a for all values of n. Then by using (A.4) for n P N + 1

we get
Z R

a
o
2
r � r�2nðnþ 1Þ

� �
un

� �2
dr þ 2nðnþ 1ÞR�2u2nðRÞ ¼ 0: ðA:6Þ
From (A.6) we conclude that
o2r � r�2n nþ 1ð Þ
� �

unðrÞ ¼ 0; a 6 r 6 R; n P N þ 1: ðA:7Þ
The only solution of (A.7) satisfying (A.3) is un(r) ” 0.

By using the result that un(r) ” 0 for n P N + 1, we can write (A.1) as
Wðr; hÞ ¼
XN
n¼1

QnðhÞunðrÞ: ðA:8Þ
Now W given by (A.8) satisfies the exact boundary conditions (2.5) and (2.6). Therefore the previous argu-

ment, in Section 2, shows that W ” 0.
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